LLMs
In the groundbreaking 2017 paper “Attention Is All You Need”, Vaswani et al. introduced Sinusoidal Position Embeddings to help Transformers encode positional information, without recurrence or convolution. This elegant, non-learned
Self-attention, the beating heart of Transformer architectures, treats its input as an unordered set. That mathematical elegance is also a curse: without extra signals, the model has no idea which
In the evolving landscape of open-source language models, SmolLM3 emerges as a breakthrough: a 3 billion-parameter, decoder-only transformer that rivals larger 4 billion-parameter peers on many benchmarks, while natively supporting
Developing intelligent agents, using LLMs like GPT-4o, Gemini, etc., that can perform tasks requiring multiple steps, adapt to changing information, and make decisions is a core challenge in AI development.
SigLIP-2 represents a significant step forward in the development of multilingual vision-language encoders, bringing enhanced semantic understanding, localization, and dense feature extraction capabilities. Built on the foundations of SigLIP, this
Unsloth has emerged as a game-changer in the world of large language model (LLM) fine-tuning, addressing what has long been a resource-intensive and technically complex challenge. Adapting models like LLaMA,