Last year, Google released a publicly available dataset called Open Images V4 which contains 15.4M annotated bounding boxes for over 600 object categories. It has 1.9M images and is largest among all existing datasets with object location annotations. The classes include a variety of objects in various categories. It covers classes varying from different kinds of musical instruments(e.g. organ, cello, piano etc.) to different kinds of aquatic animals(e.g. goldfish, crab, seahorse, oyster etc.) to various kinds of kitchenware(e.g. spoon, kitchen knife, frying pan, dishwasher) and so on. Below we show some classes of outdoor items.

All existing classes in Open Images can be seen as a dendrogram here.
The dataset can speed up many computer vision tasks by days or even months. For example, if we want to make an object detector for a single or multiple objects, we could download the images of those classes only along with their annotations and start our training process. In this post, we provide you a script that helps you download the images using multithreading, which can make the download process more than 10 times faster. It also generates the annotation files with the bounding box information for the objects instances in the images.
We present a table below which lists the number of train, validation and test instances for each class. You can also search for any objects of your interest in the table to see if there are enough number of instances to start your training.
Class Name | Train | Validation | Test |
---|---|---|---|
Clothing | 1438128 | 8527 | 26531 |
Man | 1418594 | 5654 | 17514 |
Tree | 1051344 | 3209 | 10148 |
Human face | 1037710 | 5170 | 15536 |
Person | 1034721 | 13274 | 40861 |
Woman | 767337 | 2865 | 9047 |
Footwear | 744474 | 7189 | 21205 |
Window | 503467 | 1650 | 5091 |
Flower | 345296 | 5089 | 15040 |
Wheel | 340639 | 11394 | 34604 |
Plant | 267913 | 3808 | 11579 |
Car | 248075 | 9381 | 28737 |
Human hair | 234057 | 8594 | 26301 |
Human arm | 208982 | 8341 | 25162 |
Human head | 201633 | 7865 | 25080 |
Girl | 197155 | 2420 | 7479 |
Building | 178634 | 984 | 2915 |
Human body | 175244 | 6769 | 20246 |
Mammal | 156154 | 4349 | 13479 |
House | 136152 | 246 | 822 |
Chair | 132483 | 511 | 1535 |
Tire | 122615 | 4181 | 13177 |
Suit | 110848 | 321 | 857 |
Fashion accessory | 91024 | 1026 | 3164 |
Food | 88422 | 2736 | 8331 |
Boy | 87555 | 600 | 2031 |
Table | 85691 | 714 | 2279 |
Skyscraper | 81261 | 57 | 232 |
Land vehicle | 81108 | 2689 | 8480 |
Boat | 79113 | 903 | 2672 |
Jeans | 78473 | 396 | 1433 |
Human eye | 77233 | 4304 | 13034 |
Human hand | 75307 | 4123 | 12505 |
Human leg | 71479 | 4093 | 13334 |
Toy | 70963 | 437 | 1205 |
Tower | 67945 | 82 | 264 |
Human nose | 60142 | 4341 | 12718 |
Bicycle wheel | 59521 | 733 | 2018 |
Glasses | 57946 | 262 | 890 |
Dress | 52999 | 567 | 1581 |
Vehicle | 50959 | 2105 | 7064 |
Bird | 47921 | 943 | 2751 |
Sports equipment | 44900 | 3951 | 11992 |
Street light | 44697 | 22 | 242 |
Human mouth | 44197 | 2505 | 7424 |
Palm tree | 42026 | 253 | 620 |
Book | 41280 | 698 | 2147 |
Tableware | 41086 | 285 | 936 |
Drink | 40323 | 482 | 1427 |
Bottle | 40188 | 340 | 979 |
Bicycle | 40161 | 403 | 1158 |
Furniture | 38527 | 646 | 1893 |
Snack | 37374 | 708 | 2173 |
Sculpture | 34533 | 221 | 653 |
Flag | 29246 | 87 | 252 |
Dog | 28675 | 1930 | 5818 |
Dessert | 27407 | 645 | 2092 |
Microphone | 27272 | 110 | 272 |
Fruit | 26236 | 1905 | 6215 |
Jacket | 25957 | 136 | 461 |
Guitar | 25896 | 114 | 357 |
Fast food | 24991 | 492 | 1599 |
Drum | 24818 | 109 | 352 |
Sunglasses | 23996 | 114 | 390 |
Poster | 23566 | 107 | 346 |
Fish | 23195 | 564 | 1422 |
Baked goods | 23010 | 1020 | 2907 |
Shelf | 22899 | 191 | 563 |
Houseplant | 22834 | 319 | 825 |
Flowerpot | 22760 | 302 | 659 |
Airplane | 21285 | 1027 | 3272 |
Sports uniform | 19396 | 315 | 1135 |
Door | 19256 | 165 | 524 |
Vegetable | 18621 | 496 | 1679 |
Human ear | 17774 | 870 | 2611 |
Animal | 17442 | 290 | 882 |
Shorts | 16981 | 134 | 443 |
Musical instrument | 16503 | 178 | 525 |
Helmet | 16502 | 440 | 1275 |
Bicycle helmet | 15952 | 147 | 390 |
Duck | 15451 | 119 | 294 |
Wine | 15400 | 193 | 388 |
Cat | 15183 | 381 | 1095 |
Auto part | 13586 | 2898 | 8845 |
Balloon | 13505 | 117 | 455 |
Motorcycle | 13382 | 173 | 530 |
Horse | 13368 | 392 | 1144 |
Hat | 13245 | 201 | 557 |
Train | 13050 | 91 | 315 |
Wine glass | 12934 | 119 | 356 |
Truck | 12135 | 311 | 969 |
Rose | 12053 | 309 | 899 |
Picture frame | 11957 | 57 | 158 |
Bus | 11927 | 92 | 353 |
Football helmet | 11705 | 130 | 375 |
Desk | 11693 | 48 | 136 |
Cattle | 11603 | 170 | 450 |
Bee | 11401 | 84 | 279 |
Tie | 10545 | 84 | 271 |
Hiking equipment | 10505 | 93 | 458 |
Butterfly | 10127 | 74 | 265 |
Swimwear | 10079 | 149 | 574 |
Billboard | 9823 | 29 | 50 |
Goggles | 9636 | 101 | 218 |
Beer | 9565 | 118 | 332 |
Laptop | 9327 | 61 | 199 |
Cabinetry | 9191 | 188 | 451 |
Marine invertebrates | 9112 | 68 | 217 |
Insect | 8981 | 210 | 717 |
Trousers | 8481 | 143 | 495 |
Goose | 8436 | 55 | 116 |
Dairy | 8146 | 308 | 970 |
Strawberry | 7944 | 326 | 774 |
Vehicle registration plate | 7852 | 512 | 1570 |
Van | 7720 | 151 | 500 |
Shirt | 7465 | 57 | 185 |
Traffic light | 7426 | 49 | 131 |
Bench | 7229 | 0 | 0 |
Umbrella | 7204 | 30 | 97 |
Sun hat | 6979 | 52 | 205 |
Paddle | 6951 | 253 | 699 |
Tent | 6907 | 30 | 117 |
Ball | 6845 | 266 | 902 |
Sunflower | 6815 | 55 | 124 |
Coat | 6523 | 55 | 240 |
Lavender | 6472 | 87 | 326 |
Doll | 6442 | 77 | 188 |
Camera | 6404 | 132 | 338 |
Mobile phone | 6365 | 137 | 454 |
Tomato | 6254 | 216 | 722 |
Office supplies | 6198 | 76 | 233 |
Orange | 6195 | 175 | 839 |
Pumpkin | 6150 | 49 | 157 |
Traffic sign | 6112 | 28 | 72 |
Computer monitor | 6112 | 57 | 215 |
Stairs | 5981 | 37 | 122 |
Candle | 5886 | 75 | 134 |
Pastry | 5852 | 48 | 170 |
Cake | 5784 | 326 | 878 |
Roller skates | 5476 | 295 | 723 |
Lantern | 5429 | 27 | 60 |
Plate | 5416 | 67 | 214 |
Box | 5364 | 94 | 256 |
Coffee cup | 5327 | 160 | 538 |
Coffee table | 5314 | 41 | 104 |
Bookcase | 5307 | 100 | 301 |
Watercraft | 5202 | 155 | 510 |
Football | 5097 | 64 | 220 |
Office building | 4986 | 45 | 103 |
Maple | 4923 | 13 | 54 |
Curtain | 4872 | 48 | 170 |
Kitchen appliance | 4662 | 76 | 234 |
Muffin | 4608 | 82 | 310 |
Canoe | 4543 | 82 | 292 |
Computer keyboard | 4542 | 42 | 173 |
Swan | 4523 | 49 | 136 |
Bowl | 4507 | 51 | 153 |
Mushroom | 4497 | 126 | 465 |
Cocktail | 4458 | 148 | 406 |
Drawer | 4414 | 184 | 448 |
Castle | 4310 | 12 | 71 |
Couch | 4259 | 44 | 104 |
Christmas tree | 4243 | 53 | 83 |
Taxi | 4199 | 91 | 104 |
Penguin | 4197 | 85 | 161 |
Cookie | 4158 | 184 | 636 |
Apple | 3898 | 102 | 334 |
Swimming pool | 3881 | 142 | 354 |
Deer | 3867 | 132 | 449 |
Porch | 3854 | 33 | 100 |
Bread | 3846 | 277 | 911 |
Bowling equipment | 3846 | 98 | 339 |
Television | 3789 | 39 | 124 |
Fountain | 3691 | 19 | 63 |
Lifejacket | 3678 | 103 | 273 |
Lamp | 3663 | 70 | 116 |
Fedora | 3660 | 51 | 175 |
Bed | 3563 | 114 | 328 |
Beetle | 3523 | 47 | 163 |
Pillow | 3508 | 61 | 264 |
Ski | 3505 | 78 | 431 |
Carnivore | 3501 | 200 | 625 |
Platter | 3462 | 83 | 198 |
Sheep | 3438 | 89 | 273 |
Elephant | 3272 | 56 | 232 |
Human beard | 3157 | 153 | 481 |
Boot | 3132 | 163 | 472 |
High heels | 3124 | 119 | 277 |
Countertop | 3113 | 61 | 143 |
Salad | 3088 | 213 | 605 |
Cowboy hat | 3068 | 24 | 142 |
Seafood | 3063 | 226 | 689 |
Chicken | 3059 | 65 | 227 |
Coin | 3042 | 93 | 245 |
Monkey | 3026 | 195 | 543 |
Helicopter | 3023 | 134 | 424 |
Tin can | 2988 | 42 | 188 |
Weapon | 2960 | 155 | 388 |
Sandal | 2938 | 181 | 393 |
Juice | 2838 | 174 | 512 |
Ice cream | 2834 | 118 | 395 |
Violin | 2828 | 35 | 98 |
Saucer | 2819 | 73 | 248 |
Grape | 2787 | 153 | 447 |
Cart | 2755 | 75 | 200 |
Bronze sculpture | 2748 | 51 | 101 |
Necklace | 2735 | 60 | 162 |
Bathroom accessory | 2678 | 53 | 132 |
Parachute | 2672 | 121 | 286 |
Skull | 2661 | 24 | 91 |
Surfboard | 2594 | 65 | 189 |
Rifle | 2540 | 110 | 315 |
Baseball glove | 2529 | 31 | 89 |
Handbag | 2495 | 60 | 188 |
Vase | 2468 | 56 | 171 |
Cosmetics | 2394 | 50 | 151 |
Parrot | 2388 | 82 | 283 |
Coffee | 2384 | 124 | 353 |
Scarf | 2303 | 33 | 68 |
Mug | 2272 | 24 | 107 |
Candy | 2261 | 116 | 337 |
Lily | 2252 | 124 | 496 |
Human foot | 2237 | 199 | 467 |
Luggage and bags | 2220 | 35 | 99 |
Goldfish | 2204 | 38 | 129 |
Kitchen & dining room table | 2127 | 44 | 157 |
Lizard | 2120 | 95 | 301 |
French fries | 2114 | 75 | 215 |
Sushi | 2088 | 74 | 186 |
Home appliance | 2086 | 99 | 275 |
Barrel | 2086 | 73 | 165 |
Harbor seal | 2084 | 50 | 157 |
Tool | 2075 | 41 | 137 |
Goat | 2075 | 76 | 245 |
Jellyfish | 2064 | 91 | 133 |
Medical equipment | 2060 | 84 | 207 |
Spider | 2033 | 63 | 224 |
Pizza | 2008 | 95 | 217 |
Cello | 2004 | 38 | 85 |
Tortoise | 1998 | 53 | 178 |
Squirrel | 1940 | 40 | 94 |
Watch | 1903 | 26 | 77 |
Aircraft | 1898 | 186 | 556 |
Studio couch | 1889 | 51 | 141 |
Gondola | 1868 | 25 | 74 |
Egg | 1865 | 144 | 576 |
Moths and butterflies | 1857 | 16 | 41 |
Shrimp | 1856 | 116 | 266 |
Sea lion | 1823 | 54 | 170 |
Convenience store | 1817 | 65 | 171 |
Light bulb | 1816 | 37 | 47 |
Skateboard | 1810 | 72 | 203 |
Waste container | 1807 | 19 | 103 |
Musical keyboard | 1771 | 46 | 151 |
Kite | 1766 | 30 | 75 |
Lemon | 1756 | 171 | 425 |
Marine mammal | 1746 | 47 | 157 |
Bull | 1736 | 107 | 289 |
Dinosaur | 1721 | 28 | 57 |
Falcon | 1717 | 37 | 156 |
Tank | 1716 | 58 | 161 |
Spoon | 1709 | 50 | 162 |
Pen | 1705 | 49 | 149 |
Eagle | 1704 | 50 | 201 |
Tap | 1695 | 46 | 108 |
Brassiere | 1694 | 83 | 246 |
Fork | 1687 | 45 | 143 |
Owl | 1663 | 30 | 91 |
Lion | 1653 | 62 | 142 |
Sparrow | 1651 | 63 | 163 |
Sink | 1648 | 54 | 119 |
Rabbit | 1641 | 62 | 220 |
Pig | 1613 | 69 | 201 |
Banana | 1612 | 22 | 133 |
Frog | 1608 | 41 | 122 |
Teddy bear | 1587 | 30 | 125 |
Mirror | 1572 | 21 | 84 |
Invertebrate | 1568 | 124 | 376 |
Antelope | 1568 | 85 | 385 |
Cheese | 1560 | 127 | 323 |
Trumpet | 1546 | 46 | 123 |
Dolphin | 1532 | 87 | 237 |
Chest of drawers | 1526 | 87 | 196 |
Lighthouse | 1518 | 8 | 34 |
Sofa bed | 1501 | 55 | 150 |
Dragonfly | 1490 | 16 | 65 |
Hamburger | 1486 | 80 | 206 |
Wheelchair | 1464 | 107 | 288 |
Carrot | 1456 | 50 | 155 |
Tripod | 1446 | 26 | 103 |
Earrings | 1446 | 25 | 76 |
Giraffe | 1431 | 25 | 73 |
Sock | 1425 | 15 | 136 |
Snake | 1378 | 64 | 241 |
Piano | 1374 | 82 | 215 |
Cupboard | 1353 | 85 | 218 |
Lipstick | 1343 | 37 | 99 |
Tea | 1342 | 47 | 136 |
Camel | 1340 | 30 | 87 |
Shellfish | 1287 | 50 | 128 |
Grapefruit | 1283 | 62 | 344 |
Tiger | 1260 | 21 | 57 |
Skirt | 1259 | 15 | 61 |
Headphones | 1255 | 35 | 97 |
Stool | 1254 | 30 | 85 |
Horn | 1239 | 36 | 110 |
Baseball bat | 1228 | 19 | 48 |
Clock | 1222 | 23 | 60 |
Backpack | 1216 | 28 | 70 |
Saxophone | 1208 | 37 | 97 |
Glove | 1198 | 54 | 158 |
Cucumber | 1194 | 100 | 259 |
Sandwich | 1157 | 90 | 240 |
Bear | 1137 | 50 | 163 |
Sea turtle | 1132 | 36 | 155 |
Broccoli | 1128 | 32 | 182 |
Nightstand | 1125 | 24 | 75 |
Zebra | 1120 | 44 | 123 |
Mule | 1117 | 41 | 97 |
Toilet | 1099 | 28 | 61 |
Zucchini | 1098 | 50 | 164 |
Cannon | 1087 | 20 | 66 |
Crocodile | 1069 | 52 | 108 |
Wall clock | 1067 | 18 | 42 |
Bust | 1060 | 18 | 29 |
Crab | 1041 | 66 | 162 |
Oyster | 1038 | 106 | 159 |
Whale | 1014 | 42 | 124 |
Mixing bowl | 1005 | 25 | 65 |
Whiteboard | 1003 | 16 | 37 |
Ladder | 994 | 20 | 65 |
Plastic bag | 986 | 9 | 19 |
Tennis racket | 985 | 21 | 102 |
Barge | 983 | 4 | 11 |
Tablet computer | 975 | 9 | 37 |
Tart | 973 | 26 | 151 |
Accordion | 955 | 24 | 79 |
Miniskirt | 954 | 28 | 89 |
Trombone | 953 | 17 | 61 |
Snowboard | 944 | 16 | 53 |
Snail | 943 | 39 | 136 |
Doughnut | 930 | 49 | 192 |
Ant | 925 | 28 | 76 |
Pear | 923 | 18 | 111 |
Rocket | 918 | 13 | 88 |
Billiard table | 912 | 28 | 85 |
Caterpillar | 884 | 24 | 104 |
Panda | 882 | 20 | 51 |
Coconut | 874 | 21 | 91 |
Mouse | 857 | 34 | 165 |
Knife | 850 | 77 | 216 |
Table tennis racket | 849 | 29 | 110 |
Watermelon | 844 | 32 | 126 |
Alpaca | 829 | 34 | 121 |
Leopard | 811 | 40 | 125 |
Bell pepper | 802 | 67 | 219 |
Kangaroo | 778 | 32 | 82 |
Pancake | 775 | 63 | 102 |
Snowman | 770 | 4 | 30 |
Pasta | 769 | 118 | 327 |
Peach | 756 | 64 | 280 |
Otter | 752 | 43 | 146 |
Door handle | 751 | 19 | 79 |
Willow | 735 | 2 | 5 |
Turkey | 734 | 23 | 72 |
Ladybug | 734 | 23 | 64 |
Computer mouse | 733 | 24 | 84 |
Wok | 730 | 24 | 36 |
Handgun | 727 | 24 | 81 |
Rhinoceros | 724 | 21 | 70 |
Cheetah | 715 | 29 | 72 |
Dice | 714 | 52 | 119 |
Fireplace | 711 | 35 | 62 |
Waffle | 710 | 25 | 90 |
Radish | 688 | 21 | 67 |
Crown | 687 | 19 | 50 |
Hippopotamus | 685 | 13 | 54 |
Mechanical fan | 681 | 20 | 65 |
Taco | 677 | 49 | 194 |
Pomegranate | 677 | 12 | 62 |
Polar bear | 664 | 35 | 93 |
Volleyball | 661 | 18 | 111 |
Closet | 661 | 10 | 44 |
Pineapple | 660 | 25 | 110 |
Kettle | 657 | 26 | 73 |
Washing machine | 655 | 39 | 121 |
Bat | 655 | 6 | 28 |
Sombrero | 651 | 7 | 20 |
Brown bear | 647 | 13 | 77 |
Ostrich | 640 | 34 | 137 |
Bagel | 640 | 43 | 111 |
Starfish | 639 | 21 | 81 |
Oven | 637 | 21 | 53 |
Teapot | 632 | 37 | 78 |
Loveseat | 631 | 21 | 50 |
Suitcase | 630 | 30 | 79 |
Shark | 625 | 52 | 99 |
Chopsticks | 617 | 14 | 36 |
Swim cap | 615 | 37 | 140 |
Missile | 603 | 22 | 75 |
Potato | 599 | 56 | 128 |
Lobster | 597 | 30 | 95 |
Ipod | 595 | 29 | 61 |
Golf cart | 595 | 8 | 32 |
Bow and arrow | 594 | 21 | 45 |
Refrigerator | 592 | 20 | 82 |
Jug | 590 | 23 | 76 |
Jaguar | 586 | 35 | 95 |
Shotgun | 580 | 26 | 66 |
Reptile | 578 | 34 | 93 |
Window blind | 570 | 13 | 51 |
Sword | 567 | 23 | 89 |
Raven | 567 | 32 | 107 |
Segway | 565 | 34 | 132 |
Fox | 565 | 38 | 82 |
Kitchen utensil | 549 | 57 | 142 |
Hamster | 546 | 32 | 140 |
Bathtub | 545 | 15 | 59 |
Jet ski | 543 | 18 | 32 |
Gas stove | 526 | 17 | 49 |
Scoreboard | 517 | 9 | 16 |
Woodpecker | 515 | 14 | 40 |
Beehive | 511 | 27 | 57 |
Tennis ball | 502 | 8 | 39 |
Nail | 491 | 0 | 2 |
Rays and skates | 485 | 26 | 83 |
Microwave oven | 485 | 20 | 46 |
Hot dog | 482 | 12 | 48 |
Plumbing fixture | 481 | 51 | 125 |
Ceiling fan | 478 | 11 | 40 |
Infant bed | 462 | 18 | 62 |
Seat belt | 461 | 3 | 8 |
Sewing machine | 453 | 25 | 74 |
Croissant | 447 | 40 | 78 |
Ambulance | 447 | 13 | 67 |
Bidet | 440 | 21 | 49 |
Cabbage | 435 | 24 | 101 |
Golf ball | 434 | 12 | 56 |
Corded phone | 433 | 6 | 18 |
Fire hydrant | 432 | 14 | 57 |
Mango | 429 | 12 | 26 |
Picnic basket | 425 | 12 | 26 |
Red panda | 423 | 12 | 62 |
Belt | 422 | 13 | 32 |
Koala | 418 | 14 | 49 |
Dumbbell | 413 | 13 | 32 |
Tiara | 411 | 12 | 46 |
Personal care | 409 | 11 | 18 |
Scissors | 399 | 1 | 6 |
Organ | 398 | 21 | 63 |
Stop sign | 394 | 13 | 33 |
Canary | 387 | 13 | 32 |
Asparagus | 387 | 19 | 53 |
Honeycomb | 383 | 11 | 44 |
Raccoon | 381 | 23 | 78 |
Toilet paper | 377 | 3 | 11 |
Frying pan | 377 | 11 | 16 |
Artichoke | 376 | 26 | 63 |
Squash | 375 | 20 | 47 |
Filing cabinet | 374 | 24 | 82 |
Dagger | 370 | 34 | 101 |
Snowmobile | 366 | 8 | 70 |
Limousine | 366 | 31 | 69 |
Perfume | 363 | 19 | 46 |
Popcorn | 362 | 19 | 91 |
Flute | 362 | 14 | 31 |
Bathroom cabinet | 358 | 2 | 16 |
Kitchen knife | 350 | 29 | 83 |
Pitcher | 347 | 14 | 41 |
Towel | 338 | 7 | 29 |
Stationary bicycle | 338 | 4 | 37 |
Cake stand | 337 | 3 | 7 |
Punching bag | 336 | 0 | 10 |
Ratchet | 327 | 0 | 0 |
Balance beam | 326 | 9 | 48 |
Coffeemaker | 323 | 18 | 50 |
Common fig | 317 | 24 | 74 |
Seahorse | 314 | 22 | 60 |
Wood-burning stove | 300 | 19 | 34 |
Snowplow | 300 | 19 | 50 |
Rugby ball | 294 | 7 | 28 |
Pretzel | 294 | 21 | 35 |
Drinking straw | 292 | 4 | 17 |
Power plugs and sockets | 290 | 20 | 44 |
Racket | 281 | 34 | 99 |
Centipede | 280 | 11 | 59 |
Telephone | 274 | 16 | 26 |
Submarine sandwich | 273 | 29 | 66 |
Worm | 270 | 2 | 19 |
Dog bed | 266 | 3 | 8 |
Banjo | 264 | 8 | 13 |
Printer | 263 | 19 | 48 |
Burrito | 262 | 34 | 121 |
Hedgehog | 261 | 22 | 83 |
Blue jay | 259 | 21 | 60 |
Adhesive tape | 255 | 1 | 1 |
Wine rack | 254 | 7 | 18 |
Ruler | 253 | 15 | 35 |
Flying disc | 249 | 0 | 3 |
Treadmill | 247 | 7 | 20 |
Wardrobe | 238 | 8 | 42 |
Lynx | 237 | 13 | 48 |
Remote control | 236 | 7 | 26 |
Shower | 235 | 9 | 32 |
Blender | 235 | 10 | 30 |
Harp | 231 | 18 | 50 |
Porcupine | 229 | 17 | 87 |
Guacamole | 224 | 21 | 65 |
Squid | 221 | 8 | 23 |
Toothbrush | 219 | 16 | 20 |
Mixer | 216 | 9 | 40 |
Milk | 214 | 14 | 39 |
Cutting board | 213 | 2 | 13 |
Harpsichord | 212 | 15 | 33 |
Paper towel | 210 | 2 | 7 |
Calculator | 210 | 11 | 51 |
Parking meter | 209 | 2 | 3 |
Cat furniture | 208 | 0 | 2 |
Turtle | 205 | 8 | 20 |
Wrench | 204 | 1 | 3 |
Scorpion | 204 | 17 | 49 |
Drill | 203 | 1 | 5 |
Digital clock | 199 | 7 | 39 |
Unicycle | 194 | 2 | 14 |
Training bench | 194 | 2 | 10 |
Food processor | 192 | 3 | 27 |
Whisk | 180 | 0 | 1 |
Salt and pepper shakers | 180 | 4 | 5 |
Envelope | 177 | 4 | 12 |
Stretcher | 174 | 6 | 13 |
Alarm clock | 169 | 10 | 27 |
Beaker | 168 | 0 | 6 |
Cantaloupe | 166 | 16 | 29 |
Oboe | 162 | 6 | 28 |
Briefcase | 162 | 4 | 17 |
Isopod | 154 | 8 | 7 |
Diaper | 152 | 1 | 3 |
Crutch | 150 | 0 | 2 |
Axe | 148 | 0 | 2 |
Magpie | 145 | 22 | 39 |
Tick | 143 | 0 | 1 |
Scale | 139 | 5 | 14 |
Hammer | 139 | 1 | 0 |
Pencil case | 132 | 1 | 5 |
Cricket ball | 132 | 3 | 7 |
Spice rack | 131 | 3 | 19 |
Chainsaw | 130 | 2 | 7 |
Syringe | 127 | 0 | 19 |
Slow cooker | 125 | 1 | 5 |
Cream | 123 | 16 | 69 |
Binoculars | 123 | 6 | 16 |
Serving tray | 118 | 1 | 8 |
Tree house | 110 | 4 | 19 |
Jacuzzi | 103 | 16 | 28 |
Light switch | 97 | 10 | 7 |
Dishwasher | 92 | 2 | 3 |
Flashlight | 88 | 6 | 23 |
Screwdriver | 85 | 1 | 0 |
Ring binder | 84 | 0 | 0 |
Submarine | 81 | 10 | 21 |
Face powder | 80 | 3 | 17 |
Stethoscope | 78 | 1 | 9 |
Soap dispenser | 78 | 0 | 1 |
Horizontal bar | 75 | 6 | 9 |
Measuring cup | 74 | 0 | 1 |
Cassette deck | 74 | 9 | 32 |
Toaster | 73 | 1 | 4 |
Hand dryer | 70 | 0 | 1 |
Spatula | 64 | 4 | 2 |
Stapler | 59 | 0 | 1 |
Skunk | 56 | 3 | 23 |
Armadillo | 56 | 0 | 0 |
Ladle | 54 | 0 | 0 |
Eraser | 53 | 0 | 1 |
Cooking spray | 45 | 0 | 0 |
Winter melon | 43 | 3 | 8 |
Chime | 41 | 0 | 1 |
Harmonica | 38 | 0 | 5 |
Band-aid | 36 | 0 | 0 |
Indoor rower | 35 | 0 | 6 |
Heater | 35 | 0 | 0 |
Chisel | 33 | 1 | 0 |
Waffle iron | 31 | 0 | 0 |
Fax | 28 | 4 | 3 |
Hair dryer | 27 | 0 | 3 |
Cocktail shaker | 27 | 0 | 0 |
Pencil sharpener | 21 | 0 | 0 |
Bottle opener | 21 | 0 | 1 |
Torch | 20 | 2 | 14 |
Pizza cutter | 20 | 0 | 0 |
Facial tissue holder | 20 | 0 | 0 |
Pressure cooker | 14 | 1 | 1 |
Grinder | 14 | 0 | 0 |
Humidifier | 11 | 0 | 0 |
Maracas | 10 | 0 | 0 |
Hair spray | 10 | 0 | 0 |
Bomb | 8 | 0 | 0 |
Can opener | 7 | 0 | 0 |
Paper cutter | 4 | 0 | 0 |
Kitchenware | 0 | 0 | 0 |
Container | 0 | 0 | 0 |
Download data
Lets go through a step by step process of how we can download data for a selected set of classes.
Step 1:
First we will need to install awscli
sudo pip3 install awscli
Step 2:
Then we need to get the following OpenImages files
class-descriptions-boxable.csv – It contains a mapping of the class names used internally in the dataset to human interpretable names, e.g. /m/011k07 is Tortoise, /m/011q46kg is Container, /m/012074 is Magpie etc.
train-annotations-bbox.csv – It contains annotations of the object instances in the training images.
validation-annotations-bbox.csv – It contains annotations of the object instances in the validation images.
test-annotations-bbox.csv – It contains annotations of the object instances in the test images.
You could get the above images using the links above or using wget as shown below from the command line.
wget https://storage.googleapis.com/openimages/2018_04/class-descriptions-boxable.csv
wget https://storage.googleapis.com/openimages/2018_04/train/train-annotations-bbox.csv
wget https://storage.googleapis.com/openimages/2018_04/validation/validation-annotations-bbox.csv
wget https://storage.googleapis.com/openimages/2018_04/test/test-annotations-bbox.csv
Step 3:
Next, move the above .csv files to the same folder as the downloaded code and then use the following script to download the data. The example below downloads all the training instances for the three classes – Cheese, Ice cream and Cookie.
python3 downloadOI.py --classes 'Cheese,Ice_cream,Cookie' --mode train
Similarly, to get the validation or test images, we can set the mode argument to validation or test respectively.
When you do it for your own set of classes, make sure that if there is a space in the class name, it is replaced by an underscore(‘_’). In the above example, we replaced the ‘Ice cream’ class name with ‘Ice_cream’.
You can also add optional parameters to exclude certain kind of images by setting them explicitly to 0 in the command line.
occluded=0 to exclude occluded instances.
truncated=0 to exclude instances that are truncated at the boundary.
groupOf=0 to exclude instances that represent a group of objects together. These instances usually include a group of 5 or more objects of the same class physically touching or occluding each other, e.g. a bag of apples.
depiction=0 to exclude instances that are sketches or cartoons instead of picture of a real physical object.
inside=0 to exclude instances where the picture is taken from inside the object, e.g inside a car.
By default, all the above optional parameters are set to 1. So if you do not want to include the groupOf and inside instances, but want all other instances in your training, then the download command would be:
python3 downloadOI.py --classes 'Cheese,Ice_cream,Cookie' --mode train --groupOf=0 --inside=0
The directory structure of the download would be as follows:
– class-descriptions-boxable.csv
– train-annotations-bbox.csv
– validation-annotations-bbox.csv
– downloadOI.py
– train
– ClassA
– .jpg files
– .txt files
– ClassB
– .jpg files
– .txt files
– validation
– ClassA
– .jpg files
– .txt files
– ClassB
– .jpg files
– .txt files
Label Files
Open Images provides the top left corner and the bottom right corner of the bounding box of each object instance. The X and Y coordinates of these points are represented as proportions to the image width and height respectively.
The script writes the labels of all instances of the same class in the same image into a single text file. This label file is placed in the same directory as the image file, as shown in the directory structure above.
Subscribe & Download Code
If you liked this article and would like to download code (C++ and Python) and example images used in this post, please click here. Alternately, sign up to receive a free Computer Vision Resource Guide. In our newsletter, we share OpenCV tutorials and examples written in C++/Python, and Computer Vision and Machine Learning algorithms and news.References
- OpenImages: A public dataset for large-scale multi-label and multi-class image classification, 2017
Krasin I., Duerig T., Alldrin N., Ferrari V., Abu-El-Haija S., Kuznetsova A., Rom H., Uijlings J., Popov S., Kamali S., Malloci M., Pont-Tuset J., Veit A., Belongie S., Gomes V., Gupta A., Sun C., Chechik G., Cai D., Feng Z., Narayanan D., Murphy K.
- The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale.
A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, T. Duerig, and V. Ferrari. arXiv:1811.00982, 2018.